Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.089
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1602-1610, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621945

RESUMO

This study explored the mechanism of the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix in ameliorating renal fibrosis in the rat model of diabetic kidney disease(DKD) based on the expression of hypoxia-inducible factor-1α(HIF-1α)/vascular endothelial growth factor(VEGF) and HIF-1α/platelet-derived growth factor(PDGF)/platelet-derived growth factor receptor(PDGFR) signaling pathways in the DKD rats. After 1 week of adaptive feeding, 50 male SPF-grade Wistar rats were randomized into a blank group(n=7) and a modeling group. After 24 h of fasting, the rats in the modeling group were subjected to intraperitoneal injection of streptozocin and fed with a high-sugar and high-fat diet to establish a DKD model. After modeling, the rats were randomly assigned into model(n=7), low-dose ultrafiltration extract(n=7), medium-dose ultrafiltration extract(n=7), irbesartan(n=8), and high-dose ultrafiltration extract(n=8) groups. After intervention by corresponding drugs for 12 weeks, the general conditions of the rats were observed. The body weights and blood glucose levels of the rats were measured weekly, and the 24 h urinary protein(24hUP) was measured at the 6th and 12th weeks of drug administration. After the last drug administration, the renal function indicators were determined. Masson staining was employed to observe the pathological changes of the renal tissue. The expression of prolyl hydroxylase domain 2(PHD2) and HIF-1α in the renal tissue was detected by immunohistochemistry(IHC). Real-time qPCR was employed to determine the mRNA levels of PHD2, VEGF, PDGF, and PDGFR in the renal tissue. Western blot was employed to determine the protein levels of HIF-1α, VEGF, PDGF, and PDGFR in the renal tissue. The results showed that compared with the model group, drug administration lowered the levels of glycosylated serum protein(GSP), aerum creatinine(Scr), and blood urea nitrogen(BUN) in a dose-dependent manner(P<0.05 or P<0.01) and mitigated the pathological changes in the renal tissue. Furthermore, drug administration up-regulated mRNA level of PHD2(P<0.05 or P<0.01), down-regulated the mRNA levels of VEGF, PDGF, and PDGFR(P<0.05 or P<0.01) and the protein levels of HIF-1α, VEGF, PDGF, and PDGFR(P<0.01) in the renal tissue, and increased the rate of PHD2-positive cells(P<0.01). In conclusion, the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix effectively alleviated the renal fibrosis in DKD rats by inhibiting the expression of key proteins in the HIF-1α signaling pathway mediated by renal hypoxia and reducing extracellular matrix(ECM) deposition.


Assuntos
Nefropatias Diabéticas , Fator A de Crescimento do Endotélio Vascular , Ratos , Masculino , Animais , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ultrafiltração , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/genética , Fibrose , Hipóxia , Transdução de Sinais , RNA Mensageiro/metabolismo
2.
BMC Nephrol ; 25(1): 128, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605298

RESUMO

BACKGROUND: Considering no previous research into the utilization of ascending/descending ultrafiltration and linear sodium profiles in improving blood pressure among hemodialysis patients, the present study aimed to explore the effect of the A/D-UF along with linear sodium profiles on HD patients with hypotension. METHODS: Applying a crossover design, this clinical trial was fulfilled between December 2022 and June 2023 on 20 patients undergoing HD, randomized into two groups, each one receiving two intervention protocols, viz., (a) an intervention protocol in which the liquid sodium in the dialysis solution was linear and the UF profiling was A/D, and (b) a routine protocol or HD, wherein both liquid sodium and UF in the dialysis solution remained constant. The HD patients' BP was then checked and recorded at six intervals, namely, before HD, one, two, three, and four hours after it, and following its completion, within each session. The data were further statistically analyzed using the IBM SPSS Statistics 20 and the related tests. RESULTS: In total, 20 patients, including 12 men (60%) and 8 women (40%), with the mean age of 58.00 ± 14.54 on HD for an average of 54 months, were recruited in this study. No statistically significant difference was observed in the mean systolic and diastolic BP levels in the group receiving the A/D-UF profile all through the desired hours (p > 0.05), indicating that the patients did not face many changes in these two numbers during HD. Our cross-over clinical trial demonstrated a statistically significant reduction in symptomatic IDH episodes from 55 to 15% with the application of the A/D-UF profile (p < 0.05). CONCLUSION: The study demonstrated that the A/D-UF profile could contribute to the stability of blood pressure levels among HD patients, with no significant fluctuations observed during treatment sessions. TRIAL REGISTRATION: This study was registered in the Iranian Registry of Clinical Trials (no. IRCT20180429039463N5) on 07/01/2023.


Assuntos
Hipotensão , Ultrafiltração , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Ultrafiltração/métodos , Pressão Sanguínea , Estudos Cross-Over , Sódio , Irã (Geográfico) , Diálise Renal/métodos , Hipotensão/etiologia , Soluções para Diálise
3.
Chemosphere ; 355: 141834, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565376

RESUMO

Membrane fouling caused by the organics-coated particles was the main obstacle for the highly efficient shale gas produced water (SGPW) treatment and recycling. In this study, a novel hybrid electrocoagulation (EC) and E-peroxone process coupled with UF (ECP-UF) process was proposed to examine the efficacy and elucidate the mechanism for UF fouling mitigation in assisting SGPW reuse. Compared to the TMP (transmembrane pressure) increase of -15 kPa in the EC-UF process, TMP in ECP-UF system marginally increased to -1.4 kPa for 3 filtration cycles under the current density of 15 mA/cm2. Both the total fouling index and hydraulically irreversible fouling index of the ECP-UF process were significantly lower than those of EC-UF process. According to the extended Derjaguin-Landau-Verwey-Overbeek theory, the potential barriers was the highest for ECP-UF processes due to the substantial increase of the acid-base interaction energy in ECP-UF process, which was well consistent with the TMP and SEM results. Turbidity and TOC of ECP-UF process were 63.6% and 45.8% lower than those of EC-UF process, respectively. According to the MW distribution, the variations of compounds and their relative contents were probably due to the oxidation and decomposing products of the macromolecular organics. The number of aromatic compound decreased, while the number of open-chain compounds (i.e., alkenes, alkanes and alcohols) increased in the permeate of ECP-UF process. Notably, the substantial decrease in the relative abundance of di-phthalate compounds was attributed to the high reactivity of these compounds with ·OH. Mechanism study indicated that ECP could realize the simultaneous coagulation, H2O2 generation and activation by O3, facilitating the enhancement of ·OH and Alb production and therefore beneficial for the improved water quality and UF fouling mitigation. Therefore, the ECP-UF process emerges as a high-efficient and space-saving approach, yielding a synergistic effect in mitigating UF fouling for SGPW recycling.


Assuntos
Ultrafiltração , Purificação da Água , Gás Natural , Peróxido de Hidrogênio , Membranas Artificiais , Purificação da Água/métodos , Eletrocoagulação
5.
Sci Total Environ ; 924: 171553, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458443

RESUMO

In coastal areas, the surface water has been simultaneously exposed to the algae blooms caused by eutrophication and the microplastics (MPs) pollution originating from active human activities. As a practical alternative to address these issues in drinking water plant, coagulation-ultrafiltration combined process is still confronted with the limited understanding about the comprehensive effects of MPs on algae-laden surface water (ASW) treatment. Considering the migration of MPs in nature environment and drinking water treatment process, this study first aims to systematically investigate the influence of MPs on algae cultivation, coagulation performance and membrane fouling development. The results of algae cultivation indicate that MPs stimulated the algae activity by 58 % and then constantly suppressed the secretion of protein-like, humic-like and polysaccharide-like metabolites. The variation of particle size distribution and zeta potential confirm that MPs acted as nuclei to facilitate the development of large coagulation flocs with an increasing average size from 82.6 µm to 107.6 µm, during which the negatively charged pollutants were neutralized and removed from ASW. According to the SEM images, MPs could destroy the structure of fouling layer on 50 kDa membranes during the filtration of ASW coagulation effluent. Its synergistic effect with the enhanced coagulation performance and the suppressed EOM secretion contributed to the alleviation of membrane fouling caused by overlapped large-sized foulants. However, the interaction between the enriched organic foulants by MPs and the deposited coagulants on 300 kDa membranes facilitated the development of cake layer, leading to the deterioration of membrane permeability. This study emphasizes the importance in concerning the existence of MPs during the treatment of ASW by coagulation-ultrafiltration combined process and their exact influence in water purification efficiency.


Assuntos
Água Potável , Purificação da Água , Humanos , Ultrafiltração/métodos , Microplásticos , Plásticos , Membranas Artificiais , Purificação da Água/métodos
6.
Environ Sci Technol ; 58(13): 5899-5910, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38502922

RESUMO

The established benefits of ozone on microbial pathogen inactivation, natural organic matter degradation, and inorganic/organic contaminant oxidation have favored its application in drinking water treatment. However, viable bacteria are still present after the ozonation of raw water, bringing a potential risk to membrane filtration systems in terms of biofilm accumulation and fouling. In this study, we shed light on the role of the specific ozone dose (0.5 mg-O3/mg-C) in biofilm accumulation during long-term membrane ultrafiltration. Results demonstrated that ozonation transformed the molecular structure of influent dissolved organic matter (DOM), producing fractions that were highly bioavailable at a specific ozone dose of 0.5, which was inferred to be a turning point. With the increase of the specific ozone dose, the biofilm microbial consortium was substantially shifted, demonstrating a decrease in richness and diversity. Unexpectedly, the opportunistic pathogen Legionella was stimulated and occurred in approximately 40% relative abundance at the higher specific ozone dose of 1. Accordingly, the membrane filtration system with a specific ozone dose of 0.5 presented a lower biofilm thickness, a weaker fluorescence intensity, smaller concentrations of polysaccharides and proteins, and a lower Raman activity, leading to a lower hydraulic resistance, compared to that with a specific ozone dose of 1. Our findings highlight the interaction mechanism between molecular-level DOM composition, biofilm microbial consortium, and membrane filtration performance, which provides an in-depth understanding of the impact of ozonation on biofilm accumulation.


Assuntos
Ozônio , Purificação da Água , Membranas Artificiais , Ultrafiltração , Biofilmes
7.
Water Res ; 254: 121435, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461605

RESUMO

Abandoning the costly development of new membrane materials and instead directly remodeling the naturally occurring cake layer constitutes a dynamic, low-cost, long-lasting, and proactive strategy to "fight fouling with fouling". Several optimization strategies, including coagulation/modified magnetic seed loading and applying a weak magnetic force (0.01T) at the ultrafiltration end, improved the anti-fouling, retention, and sieving performances of conventional ultrafiltration process during the treatment of source water having complex natural organic matter (NOMs) and small molecule micropollutants. Two modified magnetic seeds we prepared were composite nano-seed particles (Fe3O4@SiO2-NH2 (FS) and Fe3O4@SiO2@PAMAM-NH2 (FSP)). Aim of the study was to regulate the formation of cake layer via comprehensive testing of the antifouling properties of optimized processes and related mechanistic studies. It was found to be essential to enhance the interception of xanthate and tryptophan proteins in the cake layer for improving the anti-fouling performance based on the correlation and redundancy analyses, while the use of modified magnetic seeds and magnetic field showed a significant positive impact on water production. Blockage modeling demonstrated the ability to form a mature cake layer during the initial filtration stage swiftly. This mitigated the risk of irreversible fouling caused by pore blockage during the early stage of coagulation-ultrafiltration. Morphologically, the reconstructed cake layer exhibited elevated surface porosity, an internal cavity channel structure, and enhanced roughness that can promote increased water flux and retention of water impurities. These optimized the maturity of the cake layer in both time and space. Density Functional Theory (DFT), Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and Modified Extended Derjaguin-Landau-Verwey-Overbeek (MDLVO) calculations indicated aggregation behavior of matter on the cake layer to be enhanced effectively due to magnetic seed loading. This is mainly due to the strengthening of polar interactions, including hydrogen bonding, π-π* conjugation, etc., which can happen between the cake layer loaded with FSP and the organic matter. Under the influence of a magnetic field, magnetic force energy (VMF) significantly impacts the system by eliminating energy barriers. This research will provide innovative strategies for effectively purifying intricate source water through ultrafiltration while controlling membrane fouling.


Assuntos
Incrustação Biológica , Nanopartículas de Magnetita , Purificação da Água , Ultrafiltração , Incrustação Biológica/prevenção & controle , Dióxido de Silício , Membranas Artificiais , Água
8.
Water Res ; 254: 121384, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479174

RESUMO

Contamination of groundwater by nitrate from intensive agriculture is a serious problem globally. Excessive fertilization has led to nitrate contamination of the Coastal Aquifer in Israel. Here we report the efficient removal of nitrate from contaminated groundwater by micellar-enhanced ultrafiltration (MEUF) using a specially tailored membrane. Graft polymerization with hydrophilic poly(methacrylate) and incorporation of porous zeolitic imidazole framework ZIF-L nanoparticles imparted antifouling properties to the membrane. The resulting modified membrane showed high water permeance (82.2 ± 1.7 L·m-2·h-1·bar-1). The efficiency of nitrate removal by MEUF was tested using cetylpyridinium chloride as a surfactant in nitrate-contaminated groundwater collected from the Coastal Aquifer of Israel. The membrane reduced nitrate levels from 40-70 to levels of 6.8-29.5 mg·L-1, depending on the groundwater composition; further reduction to 6.1-24.1 mg·L-1 with complete surfactant rejection was achieved via two-stage membrane filtration, which showed high permeate flux (between 32.1 ± 0.9 and 45.9 ± 0.6 L·m-2·h-1) at 2 bar. The membrane maintained stable separation performance during multiple cycles, and the flux recovery ratio was >93 %. Nitrate concentrations fell well below the acceptable limit for drinking water, allowing the treated water to be used without restriction. Overall, the membrane has the potential to allow efficient removal by MEUF of nitrate from contaminated groundwater.


Assuntos
Resinas Acrílicas , Água Subterrânea , Poluentes Químicos da Água , Ultrafiltração/métodos , Nitratos/análise , Micelas , Hidrogéis , Poluentes Químicos da Água/análise , Tensoativos , Água
9.
J Pharm Biomed Anal ; 243: 116103, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492510

RESUMO

Polygonum cuspidatum (P. cuspidatum) is a traditional herbal medicine with a long history and proven efficacy in treating gout. However, due to the complexity of composition and extensive content distribution, the substance basis of its anti-gout effectiveness is still unclear. A strategy was proposed via integrating off-line two-dimensional liquid chromatography (2D-LC) and targeted rapid screening technology based on ultrafiltration-liquid chromatography-mass spectrometry (UF-LC/MS) and on-line high-performance liquid chromatography-2, 2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (HPLC-ABTS) to accomplish high coverage and high throughput screening of anti-gout components from P. cuspidatum. As a result, twenty components were screened from P. cuspidatum extract with both xanthine oxidase (XOD) inhibitory activity and free radical scavenging activity, then were preliminarily identified by high-resolution electrospray ionization-quadrupole-time-of-flight mass spectrometer (ESI-Q-TOF/MS). The screened results were verified by the in vitro assays. Meanwhile, molecular docking further elucidated that the screened bioactive ingredients had favourable binding capabilities with XOD. The performance of this study can achieve high efficiency and high coverage screening of the anti-gout components from P. cuspidatum, which provides methodology and strategy support for the rapid screening of bioactive ingredients from complex medicinal plants.


Assuntos
Benzotiazóis , Fallopia japonica , Gota , Plantas Medicinais , Ácidos Sulfônicos , Cromatografia Líquida de Alta Pressão/métodos , 60705 , Ultrafiltração/métodos , Simulação de Acoplamento Molecular
10.
Methods Mol Biol ; 2789: 301-311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507012

RESUMO

The evaluation of temperature-dependent drug release for solubilizing nanoformulations uses a modification of the stable isotope ultrafiltration assay (SITUA). This method is specific to parenterally administered solubilizing nanomedicines and can be used to assess drug release from the total dosage form for regulatory purposes of lot release. The principle upon which this method is based is the relationship between drug solubility and temperature in a plasma simulating media, 4.5% human serum albumin, that allows for discrimination of passing and failing lots based upon the release characteristics.


Assuntos
Isótopos , Ultrafiltração , Humanos , Liberação Controlada de Fármacos , Temperatura , Solubilidade
11.
Int J Food Microbiol ; 416: 110687, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38554558

RESUMO

Foodborne illnesses involving raw and minimally processed foods are often caused by human noroviruses (HuNoV) and hepatitis A virus (HAV). Since food is contaminated usually with small numbers of virions, these must be eluted from the food surface and then concentrated for detection. The objective of this study was to optimize an ultrafiltration (UF) concentration method for HAV and HuNoVs present on various fresh and frozen produce. The detection range of the optimized method and its applicability to different food matrices was compared to the reference method ISO 15216-1:2017. Strawberry, raspberry, blackberry, lettuce, and green onion (25 g) were contaminated with HAV, HuNoV GI.7 and HuNoV GII.4 and then recovered therefrom by elution. A commercial benchtop UF device was used for the concentration step. Viral RNA was extracted and detected by RT-qPCR. From fresh strawberries, recovery of HAV loaded at 104 genome copies per sample was 30 ± 13 %, elution time had no significant impact, and UF membrane with an 80-100 kDa cut-off in combination with Tris-glycine elution buffer at pH 9.5 was found optimal. At lower copy numbers on fresh strawberry, at least 1 log lower numbers of HuNoV were detectable by the UF method (103 vs 104 GII.4 copies/sample and 101 vs 103 GI.7 copies/sample), while HAV was detected at 101 genome copies/sample by both methods. Except on raspberry, the UF method was usually equivalent to the ISO method regardless of the virus tested. The UF method makes rapid viral concentration possible, while supporting the filtration of large volume of sample. With fewer steps and shorter analysis time than the ISO method, this method could be suitable for routine analysis of viruses throughout the food production and surveillance chain.


Assuntos
Vírus da Hepatite A , Norovirus , Vírus , Humanos , Ultrafiltração , Vírus da Hepatite A/genética , Contaminação de Alimentos/análise , Norovirus/genética , Verduras , RNA Viral/genética
12.
Colloids Surf B Biointerfaces ; 236: 113829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430829

RESUMO

Continuous-flow microfluidic devices have been extensively used for producing liposomes due to their high controllability and efficient synthesis processes. However, traditional methods for liposome purification, such as dialysis, gel chromatography, and ultrafiltration, are incompatible with microfluidic devices, which would dramatically restrict the efficiency of liposome synthesis. In this study, we developed a dialysis-functionalized microfluidic platform (DFMP) for in situ formation of purified drug-loaded liposomes. The device was successfully fabricated by using a high-resolution projection micro stereolithography (PµSL) 3D printer. The integrated DFMP consists of a microfluidic mixing unit, a microfluidic dialysis unit, and a dialysis membrane, enabling the liposome preparation and purification in one device. The purified ICG-loaded liposomes prepared by DFMP had a smaller size (264.01±5.34 nm to 173.93±10.71 nm) and a higher encapsulation efficiency (EE) (43.53±0.07% to 46.07±0.67%). In vivo photoacoustic (PA) imaging experiment demonstrated that ICG-loaded liposomes purified with microfluidic dialysis exhibited a stronger penetration and accumulation (2-3 folds) in tumor sites. This work provides a new strategy for one-step production of purified drug-loaded liposomes.


Assuntos
Lipossomos , Microfluídica , Lipossomos/química , Microfluídica/métodos , Diálise Renal , Ultrafiltração , Dispositivos Lab-On-A-Chip
13.
Molecules ; 29(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542910

RESUMO

Global water scarcity is a threat that can be alleviated through membrane filtration technologies. However, the widespread adoption of membranes faces significant challenges, primarily due to membrane biofouling. This is the reason why membrane modifications have been under increasing investigation to address the fouling issues. Antibacterial membranes, designed to combat biofouling by eliminating microorganisms, offer a promising solution. Within this study, flat sheet ultrafiltration (UF) membranes with integrated photocatalytic zinc oxide (ZnO) nanoparticles were developed, characterized, and assessed through filtration and fouling tests. The antibacterial properties of the membranes were conducted in static tests using Gram-negative bacteria-Escherichia coli-and natural tap water biofilm. The results demonstrated a notable enhancement in membrane surface wettability and fouling resistance. Furthermore, the incorporation of ZnO resulted in substantial photocatalytic antibacterial activity, inactivating over 99.9% of cultivable E. coli. The antibacterial activity persisted even in the absence of light. At the same time, the persistence of natural tap water organisms in biofilms of modified membranes necessitates further in-depth research on complex biofilm interactions with such membranes.


Assuntos
Incrustação Biológica , Nanopartículas , Purificação da Água , Óxido de Zinco , Incrustação Biológica/prevenção & controle , Ultrafiltração , Óxido de Zinco/farmacologia , Escherichia coli , Membranas Artificiais , Antibacterianos/farmacologia , Água , Purificação da Água/métodos
14.
J Med Virol ; 96(3): e29517, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476091

RESUMO

Herbal medicines (HMs) are one of the main sources for the development of lead antiviral compounds. However, due to the complex composition of HMs, the screening of active compounds within these is inefficient and requires a significant time investment. We report a novel and efficient virus-based screening method for antiviral active compounds in HMs. This method involves the centrifugal ultrafiltration of viruses, known as the virus-based affinity ultrafiltration method (VAUM). This method is suitable to identify virus specific active compounds from complex matrices such as HMs. The effectiveness of the VAUM was evaluated using influenza A virus (IAV) H1N1. Using this method, four compounds that bind to the surface protein of H1N1 were identified from dried fruits of Terminalia chebula (TC). Through competitive inhibition assays, the influenza surface protein, neuraminidase (NA), was identified as the target protein of these four TC-derived compounds. Three compounds were identified by high performance liquid chromatography (HPLC) and liquid chromatography/mass spectrometry (LC/MS), and their anti-H1N1 activities were verified by examining the cytopathic effect (CPE) and by performing a virus yield reduction assay. Further mechanistic studies demonstrated that these three compounds directly bind to NA and inhibit its activity. In summary, we describe here a VAUM that we designed, one that can be used to accurately screen antiviral active compounds in HMs and also help improve the efficiency of screening antiviral drugs found in natural products.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Plantas Medicinais , Humanos , Ultrafiltração , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Proteínas de Membrana
15.
Curr Opin Cardiol ; 39(3): 188-195, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38362936

RESUMO

PURPOSE OF REVIEW: To summarize the contemporary evidence on decongestion strategies in patients with acute heart failure (AHF). RECENT FINDINGS: While loop diuretic therapy has remained the backbone of decongestive treatment in AHF, multiple randomized clinical trials suggest that early combination with other diuretic classes or molecules with diuretic properties should be considered. Mineralocorticoid receptor antagonists and sodium-glucose co-transporter-2 inhibitors are disease-modifying drugs in heart failure that favourably influence prognosis early on, advocating their start as soon as possible in the absence of any compelling contraindications. Short-term upfront use of acetazolamide in adjunction to intravenous loop diuretic therapy relieves congestion faster, avoids diuretic resistance, and may shorten hospitalization length. Thiazide-like diuretics remain a good option to break diuretic resistance. Currently, ultrafiltration in AHF remains mainly reserved for patient with an inadequate response to pharmacological treatment. SUMMARY: In most patients with AHF, decongestion can be achieved effectively and safely through combination diuretic therapies. Appropriate diuretic therapy may shorten hospitalization length and improve quality of life, but has not yet proven to reduce death or heart failure readmissions. Ultrafiltration currently has a limited role in AHF, mainly as bail-out strategy, but evidence for a more upfront use remains inconclusive.


Assuntos
Insuficiência Cardíaca , Inibidores de Simportadores de Cloreto de Sódio e Potássio , Humanos , Inibidores de Simportadores de Cloreto de Sódio e Potássio/uso terapêutico , Ultrafiltração , Qualidade de Vida , Diuréticos/uso terapêutico , Insuficiência Cardíaca/tratamento farmacológico , Doença Aguda
16.
Water Res ; 253: 121282, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341976

RESUMO

The choice of appropriate biofilm control strategies in membrane systems for seawater desalination pretreatment relies on understanding the properties of the biofilm formed on the membrane. This study reveals how the biofilm composition, including both organic and inorganic, influenced the biofilm behavior under mechanical loading. The investigation was conducted on two Gravity-Driven Membrane reactors employing Microfiltration (MF) and Ultrafiltration (UF) membrane for the pretreatment of raw seawater. After a stabilization period of 20 days (Phase I), a biofilm behavior test was introduced (Phase II) to evaluate (i) biofilm deformation during the absence of permeation (i.e., relaxation) and (ii) biofilm resistance to detachment forces (i.e., air scouring). The in-situ monitoring investigation using Optical Coherence Tomography (OCT) revealed that the biofilms developed on MF and UF membrane presented a rigid structure in absence of filtration forces, limiting the application of relaxation and biofilm expansion necessary for cleaning. Moreover, under shear stress conditions, a higher reduction in biofilm thickness was observed for MF (-60%, from 84 to 34 µm) compared to UF (-30%, from 64 to 45 µm), leading to an increase of permeate flux (+60%, from 9.1 to 14.9 L/m2/h and +20 % from 7.8 to 9.5 L/m2/h, respectively). The rheometric analysis indicated that the biofilm developed on MF membrane had weaker mechanical strength, displaying lower storage modulus (-50 %) and lower loss modulus (-55 %) compared to UF. These differences in mechanical properties were linked to the lower concentration of polyvalent ions and the distribution of organic foulants (i.e., BB, LMW-N) found in the biofilm on the MF membrane. Moreover, in the presence of air scouring led to a slight difference in microbial community between UF and MF. Our findings provide valuable insight for future investigations aimed at engineer biofilm composition to optimize biofilm control strategies in membrane systems for seawater desalination pretreatment.


Assuntos
Ultrafiltração , Purificação da Água , Ultrafiltração/métodos , Membranas Artificiais , Filtração/métodos , Biofilmes , Água do Mar/química , Purificação da Água/métodos , Osmose
17.
Water Res ; 253: 121263, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38341977

RESUMO

Ultralow-pressurized ultrafiltration membrane process with low energy consumption is promising in surface water purification. However, membrane fouling and low selectivity are significant barriers for the wide application of this process. Herein, an ultrathin zwitterionic hydrogel nanolayer was in-situ grown on polysulfone ultrafiltration membrane surface through interfacially-initiated free radical polymerization. The hydrogel-modified membrane possessed improved biological fouling resistance during the dynamic filtration process (bovine serum albumin, Escherichia coli and Staphylococcus aureus), comparing with commercial polysulfone membrane. The enhanced biofouling resistance ability of zwitterionic hydrogel nanolayer was derived from the foulant repulsion of hydration shell and the bactericidal effect of quaternary ammonium, according to the results of foulant-membrane interaction energy analyses and antibacterial performances. In surface water treatment, the zwitterionic hydrogel layer inhibited biofouling and resulted in the formation of a loose and thin biofilm. In addition, the hydrogel-modified membrane possessed 22% improvement in dissolved organic carbon (DOC) removal and 134% increasement in stable water flux, compared to commercial polysulfone membrane. The in-situ grown zwitterionic hydrogel nanolayer on membrane surface offers a prospectively alternative for biofouling control in ultralow-pressurized membrane process.


Assuntos
Incrustação Biológica , Polímeros , Sulfonas , Purificação da Água , Incrustação Biológica/prevenção & controle , Ultrafiltração/métodos , Hidrogéis , Membranas Artificiais , Purificação da Água/métodos
18.
Anal Bioanal Chem ; 416(7): 1647-1655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38305859

RESUMO

Target-based drug discovery technology based on cell membrane targets has gained significant traction and has been steadily advancing. However, current methods still face certain limitations that need to be addressed. One of the challenges is the laborious preparation process of screening materials, which can be time-consuming and resource-intensive. Additionally, there is a potential issue of non-specific adsorption caused by carrier materials, which can result in false-positive results and compromise the accuracy of the screening process. To address these challenges, this paper proposes a target-based cell membrane affinity ultrafiltration technology for active ingredient discovery in natural products. In this technique, the cell membranes of human lung adenocarcinoma epithelial cells (A549) with a high expression of epidermal growth factor receptor (EGFR) were incubated with candidate drugs and then transferred to an ultrafiltration tube. Through centrifugation, components that interacted with EGFR were retained in the ultrafiltration tube as "EGFR-ligand" complex, while the components that did not interact with EGFR were separated. After thorough washing and eluting, the components interacting with EGFR were dissociated and further identified using LC-MS, enabling the discovery of bioactive compounds. Moreover, the target-based cell membrane affinity ultrafiltration technology exhibited commendable binding capacity and selectivity. Ultimately, this technology successfully screened and identified two major components from the Curcumae Rhizoma-Sparganii Rhizoma (CS) herb pair extracts, which were further validated for their potential anti-tumor activity through pharmacological experiments. By eliminating the need for laborious preparation of screening materials and the potential non-specific adsorption caused by carriers, the development of target-based cell membrane affinity ultrafiltration technology provides a simplified approach and method for bioactive compounds discovery in natural sources.


Assuntos
Produtos Biológicos , Ultrafiltração , Humanos , Ultrafiltração/métodos , Produtos Biológicos/farmacologia , Tecnologia , Receptores ErbB , Membrana Celular
19.
Water Res ; 253: 121281, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364461

RESUMO

Ultrafiltration (UF) technology is widely used in secondary water supply systems (SWSS) to provide high-quality drinking water. However, the challenge of severe membrane fouling, which leads to frequent cleaning requirements, makes UF maintenance intensive. In this study, we tried to validate the feasibility of achieving zero fouling without the need for cleaning in the UF for SWSS, i.e., the fouling resistance can be maintained for a very long time without any increase. We operated dead-end UF systems at different fluxes, both with and without residual chlorine, and monitored the formation of fouling layers during filtration. The results demonstrated the successful achievement of zero fouling under a flux of 10 L/(m2 h) in the absence of chlorine, evidenced by no increase in transmembrane pressure for three months. This zero-fouling phenomenon was attributed to the formation of a self-regulating biofouling layer. This biofouling layer could degrade the deposited foulants and featured a loose morphology, facilitated by microbial activities in the cake layer. Although residual chlorine reduced the fouling rate by half at a flux of 30 L/(m2 h), it hindered the achievement of zero fouling at the lower flux of 10 L/(m2 h), due to its inhibitory effect on microbial activity. Intermittent operation of UF was effective in achieving zero fouling at higher fluxes (e.g., 30 L/(m2 h)). This benefit was primarily ascribed to the biodegradation of accumulated foulants and the expansion of biofouling layer during the pause of the intermittent filtration, which prompted the formation of biofouling layers with loose structure and balanced composition. To the best of our knowledge, this study is the first attempt to achieve zero fouling in UF for SWSS, and the findings may offer valuable insights for the development of cleaning-free and low-maintenance membrane processes.


Assuntos
Incrustação Biológica , Água Potável , Purificação da Água , Ultrafiltração/métodos , Cloro , Purificação da Água/métodos , Membranas Artificiais , Incrustação Biológica/prevenção & controle , Halogênios , Cloretos , Abastecimento de Água
20.
Environ Sci Pollut Res Int ; 31(13): 19166-19184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38383927

RESUMO

A bibliometric study using 1992 to 2021 database of the Science Citation Index Expanded was carried out to identify which are the current trends in textile wastewater treatment research. The study aimed to analyze the performance of scholarly scientific communications in terms of yearly publications/citations, total citations, scientific journals, and their categories in the Web of Sciences, top institutions/countries and research trends. The annual publication of scientific articles fluctuated in the first ten years, with a steady decrease for the last twenty years. An analysis of the most common terms used in the authors' keywords, publications' titles, and KeyWords Plus was carried out to predict future trends and current research priorities. Adsorbent nanomaterials would be the future of wastewater treatment for decoloration of the residual dyes in the wastewater. Membranes and electrolysis are important to demineralize textile effluent for reusing wastewater. Modern filtration techniques such as ultrafiltration and nanofiltration are advanced membrane filtration applications.


Assuntos
Ultrafiltração , Águas Residuárias , Bibliometria , Corantes , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...